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Abstract-This papcr is a sequel to Ref. [I] in which a material momentum for thermoelasticity was
derived. Our main goal here is to show that, in analogy to the elastic case, it is possible to relate an
integral of the material momentum with a concept of energy release rate. However the relation
obtained is not local in time: it holds during a time interval, which agrees with the results obtained
in Ref. [1].

I. INTRODUCTION

In a previous paper[l] we constructed a Lagrangian density L,o for linear thermoelasticity
(eqn (8) of Ref. [l)).t

From its expression we generated quantities that were found to be divergence-free in
any part of a thermoelastic body without defects. This divergence was to be understood in
both space and time. These quantities, called material momenta were integrated over a time
period extending from time 0 to a specified final time to. We then proceeded to integrate
the quantities obtained on a subdomain G and we produced a material analogue of an
impulse-momentum type relation (eqn (22) of Ref. [I))

where, as in Ref. [1], a is the material coordinate, x(a, t) the position of the particle
originating from a, s(a, t) the entropy, and where, if .(a, t) denotes the temperature
increment,

t7(a, t) = f: .(a, 1') dt'.

Finally, Imj(a, t) is given in eqn (20) of Ref. [I].
In this paper we show that, in analogy to the elastic case, the quantity

(2)

(3)

where C is any smooth surface around a defect in a given body B, is related to the concept
of energy release rate (over the time interval (0, to)) of the body B, due to an infinitesimal
translation of the defect in the mth-direction.

tIn eqn (8) of Ref. 11], the term ~i.ij(a)[~.l' ~.;]~ should read as V'ij(a)[~.j' '1.i]~' while in eqn (20) of Ref. [1].
the term L,/l,., should read - L,.6,...
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In quasistatic elasticity. the quantity

(4)

where L is the classical Lagrangian functional for elasticity, is well known to be equal to
the potential energy release rate associated with the quasi-static virtual translation of C in
the rnth-direction[2].

Since critical values of the energy release rate determine the growth or motion of the
defect, Jm is indeed an essential quantity. Reference is made to Herrmann[3] or Budiansky
and Rice[4] for further details.

We propose to show that, in the case of linearized thermoelasticity, the quantity J',:;
defined by (3) equals the potential energy release rate over the time interval (0, to) of the
body B, due to a purely elastic quasi-static virtual transformation of this body. The details
of this transformation will be described later on in this paper.

To this effect we first derive a complete expression for the variation bAG of rJ'le action
integral

(5)

under a one-parameter family of transformations for both dependent and independent
variables (Section 2). In (5), G is the subdomain of B lying between C and oB, the external
boundary of B.

We then proceed to derive the potential energy release rate associated with a purely
elastic quasistatic virtual transformation of the body under consideration (Section 3).

Upon postulating stationarity of the action under the one-parameter family of trans
formations considered in Section 2, we obtain in Section 4 a so-called "transversality
relation" between the variation of the dependent and independent variables. A simple
inspection of this relation enables us to make our conclusions in Sections 4 and 5, based
on developments presented in Section 3.

The reader is referred to [I] for the definition of all undefined quantities that appear
in the text.

2, VARIATION OF THE ACTION FUNCTIONAL

It is assumed here that the body under consideration is homogeneous. Furthermore,
all thermal sources or body loadings are neglected. We then consider a one parameter
family of transformations ak(A., t, am), Xk(A., t, am), ij(A., t, am) of both dependent and
independent variables with the following properties:

-at A. = 0, virtual and real variables coincide, i.e.

(6)

-the virtual dependent fields (x.. ij) are authentic fields, i.e.

(7)

Hypotheses (6) and (7) imply that all derivatives of the virtual fields x.. ij with respect
to the virtual independent variables am, t coincide with their real analogues for ). = 0, i.e.
for example,

(8)
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We set

and abbreviate oak(a/, I) to oak(t), ....
Then, for example,
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(9)

(10)

We finally assume that, on the part C of the boundary of G, oall) is specified, and
that on oB, all Oak's are equal to O.

Call (j the image of G under this transformation. The Jacobian of the transformation
is given by

The variation of AG, denoted oAG, is such that

+O"ij(a, I)OX/J(to- I)-s(a, t)o~(to - I)

+ pXi(a, I)ox/(to - 1)- !q,(a,t)ol1./(to - I)

-!A.ijl1J(a'/)O~,;(lo-t)}d 3a.

(11)

(12)

In the derivation of (12) we have taken advantage of the assumptions of homogeneity as
well as of the symmetry of the convolution operator. The ox/'/s, oxts, oil's, o"./s and o;,'/s
are to be understood as

d [ax]OXij(/) =d' ~ ~:. (I), ....
.1'. va] .<=0

(13)

We now proceed to express these quantities in terms of oah 011, ox/. Since these
computations are somewhat tedious, not all derivations are presented. Only the most
intricate, that of O;'j' is given. The principle would be the same for all others. Whenever we
use a/a here, we mean differentiation with respect to the explicit dependence; otherwise we
use did. Consider

then,

(14)
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At A= 0, we obtain, in view of (8),

(16)

But

(17)

thus at A= 0,

(18)

which is precisely the first term of the right-hand side of (16). Relation (16) can be rewritten
as

(19)

Since we do not further refer to explicit differentiation, we abandon the distinction pre
viously introduced. Similarly, we would obtain the following expressions for bX;,j' b'7,j' b:\:;,
by!:

(20)

We now use (19) and (20) in (12) and integrate by parts appropriately. With the notations
of Ref, [I], we obtain

-bAG = I d 3a fO dt[ -uijJ+px;](a, t) bx;(to-t) 1
+( -S+qi,i)(a, t)b'7(to-t)- {OJ[ -Lto C>j/-uij(a, t)Xi,/(a, to-t) (2la)

+ qj(a, t)'7Aa, to - t)] + 0, [px";(a, t)Xi,/(a, to - t) I
- sea, t)'7Aa, to - t) - }I.ij'7J(a, t)'7,iI(a, to - t)]} c>a/(t 0 - t)
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+aj {[ - L,o bjt-O'ij(a, I)Xi,/(a, 10 - I) 1
+ qj(a, t)rJAa, to - t)]bat(to - I) +O'jj(a, l)bXj(t 0 - t)

- qj(a, t)brJ(t 0 - t)}

+a,{[pXj(a, t)x;.t(a, to- I) - 5(a, t)rJAa, to- t) J
- ~A.ijrJ.j(a, t)rJ.iI(a, t01- t)]bat(t 0 - t) - pXj(a, t)bxj(t0- t)

+s(a, t)brJ(t 0 - t) + f)'ijrJia, t)aMrJ(t 0 - t)]}

- a,OAijrJia, t)rJ./(a, to - t)aMa,(to - t)]}
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(21 b)

(21c)

It is appropriate at this point to further specify the transformation: bat is independent of t
and it reduces to a translation in the mth-direction on C, i.e.

(22)

Under such a transformation, (21) simplifies considerably. The bracket (a) vanishes. Indeed,
its first two terms are the equations of motion and its third term is precisely the material
conservation law obtained in Ref. [1] (eqn (19) of Ref. [1]). The bracket (c) also vanishes,
since bat does not depend on t. We apply the divergence theorem on (b), keeping in mind
that on aB all material virtual transformations vanish. We obtain, in view of (3),

1',/1+ L I{[px;(a, t)x;.t(a, to - t) -s(a, t)rJia, 10 - t)

-HijrJ)a, t)rJ.iI(a, to - t)] bat

- Llpx;(a, t)bx;(to-t)-s(a,t)brJ(to-t)

-1A.;jrJ)a, t)a;[brJ(to - t)] \'=1
0

d 3a
r-O

In view of (2), the bracket (a) in (23) can be rewritten as

(23a)

(23b)

(24)

Let us point at the close analogy between the expression (24) and the impulse momentum
type relation (1).

3. POTENTIAL ENERGY RELEASE RATE

From now on, our attention is restricted to quasistatic evolutions. Starting at time t
we freeze the temperature increment field t(a, ,) at its current value t(a, t). We then compute
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the potential energy release rate associated with the purely elastic virtual change 6'~k(a, [)
of the field variable x.(a, f).

In our setting the internal energy functional is given by

(25)

The potential energy associated with the subdomain G is then given by

(26)

With the help of the divergence theorem and of the equilibrium equations, this last
expression can be rewritten as

Computing the variation bPG(t) of the expression (27), when the body B undergoes a
purely elastic virtual change bXk(a, t) of the field variable x,{a, t) is a trivial task if one bears
in mind that ~(a, t) (i.e. the temperature increment field) remains constant during such an
evolution.

We obtain:

(28)

The divergence theorem, together with the real equilibrium equations at time t, yield

Thus the total variation of PG(t) during the time interval (0, to) is given by

ito it01
bP~lolal = oPG(t) dt = - uij{a, t)ox,{a, t)njdudt.

o 0 .G

(29)

(30)

4. TRANSVERSALITY RELATION AND ENERGY RELEASE RATE

In this section we postulate the stationarity of the action under the one-parameter
family of transformations described in Section 2, restricting our attention to quasistatic
evolutions.

Remark
In the familiar case of a semi-infinite straight crack in an infinite homogeneous

thermoelastic 2-dimensional body loaded at infinity, the action will be stationary under
a transformation such that

oa is parallel to l', (31 )

where l' is a unit vector in the direction of the crack.
Setting oA G to zero in eqn (23) yields a relation between the variations of the dependent

and independent variables, i.e. between the ox;'s and 0'1 on the one hand and the oa;'s on
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the other hand. As such this relation is referred to as a transversality condition (see
Edelen[5]).

With the help of the remark at the end of Section 2, this transversality condition can
be written as

J:.?+ Lsea, O)~./(a, to)(ja/ d 3a

= - r ro

[O';)(a, t)(jx;(t 0 - t) - q/a, t)(j~{t 0 - t)]n) dO' dt
JaG Jo (32)

If the one-parameter family of transformations defined in Section 2 has the further
property that

(33)

the transversality condition becomes

It is merely a matter of setting

(35)

in (30) to obtain the right-hand side of eqn (34).
We have thus shown that, in a quasistatic setting, the quantity

(36)

equals the potential energy release rate associated with the purely elastic virtual change
(jxk(a, to - t) of the field variable xk(a, t).

If the initial entropy happens to be zero (which corresponds to the case where J'.:I is
truly path-independent[l]) we recover in our setting the exact analogue of the elastic case.

As it had been noted in Ref. [I], the striking difference with the classical situations of
fracture mechanics lies in the nonlocal character in time of the quantities defined.

5. CONCLUSIONS

In this paper we have established the close relation between path integrals of the
material momenta J:.? and a concept of potential energy release rate. In contrast with their
elastic analogues, the quantities involved here are to be considered over a time interval,
which underlines once again the importance of the dissipative character of a thermoelastic
system.

It would of course remain to show that critical values of the potential energy release
rate introduced in Section 3 constitute a sound criterion for the growth of a defect in an
elastic medium where thermal dissipation is not negligible.
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